AUSTRALIAN INSTITUTE OF PHYSICS

Promoting the role of Physics in research, education, industry and the community

Menu
Log in

AIP LOGO

NEWS

The AIP monthly bulletin reaches over 4000 scientists, future scientists and stakeholders. To subscribe to the AIP bulletin, please email aip@aip.org.auTo provide physics news, please email physics@scienceinpublic.com.au. To advertise in the bulletin, see our Jobs page.

News Archive:
Previous AIP bulletins can be found here

Current News:

  • 1 Mar 2024 12:00 PM | Anonymous

    UNSW researchers have demonstrated multiple ways to write quantum information in silicon for more flexible quantum chips design.


    Quantum computing engineers Irene Fernandez de Fuentes and Scientia Professor Andrea Morello. Sydney Quantum Academy


    Quantum computing engineers at UNSW Sydney have shown they can encode quantum information – the special data in a quantum computer – in four unique ways within a single atom, inside a silicon chip.

    The feat could alleviate some of the challenges in operating tens of millions of quantum computing units in just a few square millimetres of a silicon quantum computer chip.

    In a paper published recently in Nature Communications the engineers described how they used the sixteen quantum ‘states’ of an antimony atom to encode quantum information. Antimony is a heavy atom that can be implanted in a silicon chip, replacing one of the existing silicon atoms. It was chosen because its nucleus possesses eight distinct quantum states, plus an electron with two quantum states, resulting in a total of 8 x 2 = 16 quantum states, all within just one atom. Reaching the same number of states using simple quantum bits – or qubits, the basic unit of quantum information – would require manufacturing and coupling four of them.

    Lead author Irene Fernandez de Fuentes says the team, under the guidance of Scientia Professor Andrea Morello, drew on more than a decade’s work that had established different methods of quantum control to show all were possible within the same atom. The antimony atom was implanted in the chip by colleagues at the University of Melbourne, using facilities of the Heavy Ion Accelerators at the Australian National University.

    “First, we showed that we could control the antimony’s electron with an oscillating magnetic field, similar to the breakthrough in 2012 which was the first time a qubit had ever been demonstrated in silicon,” she says.

    “Next we showed that we could use a magnetic field to manipulate the spin of the antimony’s nucleus. This is the standard magnetic resonance method, as used for example in MRI machines in hospitals. The third method was to control the nucleus of the antimony atom with an electric field, something that was discovered by lucky accident in 2020.


    Artistic depiction of the 16 quantum states of the antimony atom, and all the different ways in which one can climb between them. UNSW Sydney


    “And the fourth way was to control both the antimony nucleus and the electron in opposition to each other, using an electric field using so-called flip-flop qubits, which was demonstrated by this team last year.

    “This latest experiment shows that all four of these methods can be used in the same silicon chip using the same architecture.”

    The advantage of having four different methods is that each method gives computer engineers and physicists more flexibility when designing future quantum computing chips.

    For example, magnetic resonance is faster than electric resonance, but the magnetic field spreads widely in space, so it may also affect neighbouring atoms. Electric resonance, while slower, can be applied very locally to select one specific atom without affecting any of its neighbours.

    “With this big antimony atom, we have the complete flexibility of how we integrate it with a control structure over a silicon chip,” Prof. Morello says.

    Why this matters

    The quantum computers of the future will have millions, if not billions of qubits working simultaneously to crunch numbers and simulate models in minutes what would take today’s supercomputers hundreds or even thousands of years to complete. While some teams around the world have made progress with large numbers of qubits, such as Google’s 70 qubit model or IBM’s version which has more than 1000, they require much larger spaces for their qubits to work without interfering with one another.

    But the approach that Prof. Morello and other colleagues have taken at UNSW is to design quantum computing using technology already in use to make conventional computers. While progress may be slower in terms of numbers of working qubits, the advantage of using silicon will mean being able to have millions of qubits in a square millimetre of chip.

    “We are investing in a technology that is harder, slower, but for very good reasons, one of them being the extreme density of information that it'll be able to handle,” says Prof. Morello.

    “It's all very well to have 25 million atoms in a square millimetre, but you have to control them one by one. Having the flexibility to do it with magnetic fields, or electric fields, or any combination of them, will give us lots of options to play with when scaling up the system.”

    Back to the lab

    Next, the group will use the large computational space of the antimony atom to perform quantum operations that are much more sophisticated than those afforded by plain qubits. They plan to encode a ‘logical’ qubit within the atom – a qubit built upon more than two quantum levels, to get enough redundancy to detect and correct errors as they occur.

    “This is the next frontier for practical, useful quantum computer hardware” says Prof. Morello. “Being able to build an error-corrected logical qubit within a single atom will be a tremendous opportunity for scaling up silicon quantum hardware to the point where it becomes commercially useful”.

    This article was published by UNSW Sydney Newsroom.

  • 6 Feb 2024 10:00 AM | Anonymous

    The Order of Australia awards recognise and celebrate Australians, meritorious awards, and recognition for distinguished and conspicuous service. The AIP would like to congratulate the following AIP members for their accomplishments.


    Revealing how collisions with rocks shape planets:

    The 2022 AIP Women in Physics Lecturer A/Prof Katarina Miljkovic OAM was awarded an Order of Australia Medal for "service to science as a researcher". Katarina was Scientist of the Year in 2019 and UNESCO Women in Science Fellow in 2018.



    X-ray scattering guru and a 'godfather' of the Aus synchrotron:

    AIP Life Member Emeritus Prof Dudley Creagh AM was appointed a Member of the Order of Australia “for significant service to science, and to tertiary education”, including contributions to X-ray scattering and the development of the Australian National Beamline Facility at Tsukuba, Japan, and the planning of, and the design of the Spectroscopy beamline for, Australian synchrotron.



    The art and science of sundials:

    Former AIP member Dr Margaret Folkard OAM was awarded an Order of Australia Medal for service to gnomonics, and to the community. Margaret was a research physicist while co-founding and co-directing Sundials Australia, designing and constructing sundials across Australia.



    Former AIP member John Ward OAM was awarded an (Honorary) Order of Australia Medal for service to gnomonics, as co-founder and co-director of Sundials Australia with Dr Margaret Folkard OAM.

    (Photo credit: Khama Reid)



  • 5 Feb 2024 12:30 PM | Anonymous

    Each year, the AIP recognises excellence in research, leadership, and outreach.

    If you have recently completed postgraduate research, are a woman in leadership, are furthering physics education, or have made outstanding contributions to physics in other ways, consider nominating for the 2024 AIP Awards.

    The closing dates and awards available for 2024 are:

    Nominate now.


  • 30 Nov 2023 2:00 PM | Anonymous

    The 2023 AIP Photography Competition, run by the ACT branch but open to entries Australia wide, concluded in October.

    The winners have been decided! Congratulations to the winners and to everyone who participated.

    Grand Prize and University Student Prize: Ivan Toftul

    The Grand Prize was awarded to Ivan Toftul for a work on birefringence. Looking through a linear polariser, you see cuts of tape stuck on a laptop screen in the shape of a heart. Because plastic molecules are elongated, the tape exhibits birefringent properties: ordinary and extraordinary rays exit the plastic in or out of phase depending on wavelength and thickness resulting in eclectic colours that form an image.

    The University Student Prize was also awarded to Ivan Toftul for a depiction of the nanostructure of a metamaterial via diffraction. Structuring material on a nanoscale opens up great possibilities in modern photonics. While it is not possible to see the actual design with the naked eye, the clusters of different metasurfaces create beautiful diffraction patterns.

    Outstanding Photo Award: Jared Landau

    Jared's photo won The Outstanding Photo Award, featuring the planets imaged from his own backyard. This image shows Mars, Jupiter, Saturn and Uranus scaled according to their apparent sizes as seen from Earth.

    This was captured from Jared’s backyard in suburban Melbourne with an 8" Newtonian telescope. It highlights the incredible capabilities available to modern astronomers. This type of detail would have been unthinkable to amateur observers even a few decades ago! The fact that high-quality astrophysical data can be collected from the comfort of your own home (with relatively modest equipment) was a huge motivator in Jared’s decision to study physics.

    School Student Prize: Kate Kristiansen

    The School Student Prize was awarded to Kate Kristiansen, who photographed capillary waves on water. 
    Kate chose to photograph waves because of how important they are in physics. They come up in light waves, sounds waves and even in the foundation of quantum mechanics and string theory. Kate wanted to capture one of the simplest forms of waves – and understand the foundation of waves – before learning the depth and complexity of more intricate waves.


  • 30 Nov 2023 1:48 PM | Anonymous

    … all while discovering how the Universe evolved, how galaxies form and where the elements come from.

    Around the world, research agencies are struggling to achieve gender parity.

    A paper published in Nature Astronomy reports how a national Australian astronomy centre achieved equal numbers of women and men using science.

    “We used research in sociology and psychology to develop evidence-based strategies, and to create a supportive and positive culture in our Centre,” says Professor Lisa Kewley, the founding director of ASTRO 3D, the Australian Research Council Centre for All Sky Astrophysics in 3 Dimensions, and the lead author on the paper. Professor Kewley now leads the Center for Astrophysics, Harvard & Smithsonian.

    “Our success offers a model to other organisations, especially in the physical sciences where participation rates for women continue to be well behind the biological sciences, and where gender equality has remained stubbornly low,” says Professor Emma Ryan-Weber, the current Director of ASTRO 3D.

    “Astronomy is a gateway science,” says Professor Ryan-Weber. “Students are fascinated by the question of what’s out there in space and how the elements that fused inside stars end up being the oxygen we breathe. I am proud that our centre is providing a diverse range of role models for the next generation – encouraging them to take up maths and physics, which opens up career opportunities not just in astronomy but across the physical sciences and a range of technical industries, such as data science.”

    “Astronomy is regarded as leading in gender equity in the physical sciences. But when we established ASTRO 3D in 2017, I looked at the numbers and realised that on current trends it would take more than 60 years to reach gender parity,” says Professor Kewley.

    Across Australia, women make up 30 to 35% of PhD astronomy students, and less than 20% at the highest professorial level. “And women are more than three times more likely to leave the profession. Sixty-two per cent of women and 17% of men leave astronomy at the junior postdoctoral levels. We had to do better,” Professor Kewley says.

    “Our program was implemented between December 2017 and January 2023. In that time, ASTRO 3D went from 38% women to 50%,” she says.

    The key steps included:

    • setting diversity targets with regular monitoring of progress
    • selecting a diverse set of team leaders
    • in-person diversity training for all organisation members
    • ensuring 50% women on postdoctoral selection committees
    • ensuring 50% women on postdoctoral short-lists.

    “Diverse leadership is crucial for improving the diversity within teams,” says Professor Stuart Wyithe, Director of the Research School for Astronomy & Astrophysics, The Australian National University.

    “Women-led teams recruited and retained more women postdoctoral researchers, attracted more women students, and worked with more women collaborators, while the converse was true for men-led teams,” he says.

    “The ASTRO 3D program reached a tipping point when there were 40% women in the organisation as supervisors, mentors and role models for students. After that, student enrolments by women in the Centre accelerated. The gains were not made at the expense of men, as the membership grew over this period,” Professor Kewley says.

    Recruiting women is one thing, but retaining them is just as important and ASTRO 3D introduced a range of policies to make sure their staff felt welcome and valued. These included a focus on leadership development, promotion of work-life balance, partner recruitment, as well as pathways for reporting misconduct.

    In all categories, larger percentages of women were retained than men.

    Among students, 55 to 58% women were retained compared with 37 to 48% men and a larger percentage of women postdoctoral researchers were retained in the Centre (67 to 70% women and 55 to 69% men).

    “This suggests that the presence of women supervisors and role models is critical for attracting and retaining women.”

    Professor Ryan-Weber , who is also an astronomer at Swinburne University of Technology, says the paper clearly paves the way for other research centres to achieve similar results.

    “Our researchers have made phenomenal discoveries in understanding how elements, stars, galaxies and the gas that surrounds them evolved from the early Universe to today. Their skills have translated to international success in academia and to solve real-world problems in industry.

    “But the greatest legacy of ASTRO 3D may be as a role model for better diversity in research,” she says.

    (Story from ASTRO 3D).


  • 16 Nov 2023 10:00 AM | Anonymous

    The Commission on Particles and Fields (C11) of IUPAP solicits nominations of outstanding young experimental or theoretical particle physicists for the two 2024 Early Career Scientist Prizes.

    The prizes, each consisting of an IUPAP medal and a cash (€1000) award, will be presented at the 42nd International Conference on High Energy Physics, Prague, Czech Republic on July 18 - 24, 2024.

    Candidates for the prize should have a maximum of 8 years of research experience (excluding career interruptions) following the PhD by February 1, 2024.

    Nominations for the IUPAP Particles and Fields Early Career Scientist Prizes:

    • can be made by experimental or theoretical particle physicists who know the work of the nominee well and include a citation statement,

    • should consist of a minimum of two and a maximum of three letters explaining the nominee's qualifications and scientific achievements, a complete CV, a list of publications, and

    • include a proposed award citation of 50 words or less describing the nominee's contributions.

    Recipients of IUPAP Awards are expected to meet the commonly held standards of professional ethics and scientific integrity. Nominators should include a statement saying that, to the best of their knowledge, there are no concerns that IUPAP should be aware of regarding the nominee satisfying this expectation.

    The nominator should collect the material and upload it at https://academicjobsonline.org/ajo/jobs/26608

    All material should be submitted before February 1, 2024, at 12:00pm CET.


  • 9 Nov 2023 11:35 AM | Anonymous

    Apply by 31 January 2024

    Science and Technology Australia (STA) has announced that its Science Meets Parliament 2024 program will be held on 20–21 March 2024, in person at Australian Parliament House, Canberra.

    As a STA member organisation, the AIP will be sponsoring two selected delegates to attend the program.

    We encourage early career researchers to apply to attend, as well as those more senior.

    Science Meets Parliament offers science, technology, engineering and mathematics (STEM) professionals a program of bespoke training to help forge deeper connections between federal Parliamentarians and the STEM community.

    If you are interested in attending, please send an expression of interest to AIP Secretary Michael Schmidt at secretary@aip.org.au. Please include:  

    • your CV, no longer than one page
    • a statement, no longer than one page, indicating why you would like to attend and what you hope to gain from the experience.

    The AIP will cover your registration for the event

    Please send your expression of interest to 
    secretary@aip.org.au by 31 January 2024.

    The AIP executive team will assess each application, taking into account gender balance, research area balance and geographic coverage.

    More information about Science Meets Parliament can be found at: https://scienceandtechnologyaustralia.org.au/science-meets-parliament-about


  • 1 Nov 2023 9:45 AM | Anonymous

    Over 150 Year 9 girls gathered at Flinders University for the 2023 STEM Enrichment Academy from 25-27 October, offering opportunities for the students from South Australia and the Northern Territory to engage with the world of STEM.

    AIP President Professor Nicole Bell opened the event with a plenary on ‘The hidden universe – neutrinos and dark matter’.

    Dr Stephen Warren-Smith and Dr Darryl Jones from the AIP SA branch led high school girls through experiments on 'mind-bending light', which included activities such as bouncing laser light around inside a 'jelly waveguide'.

    Over the 3 days, the girls perform science in newly-built labs, engage with scientists, walk and talk with women-in-STEM role-models, and explore STEM opportunities at Flinders University.

    The program will return in 2024 with dates to be announced soon. In the meantime, you can register your interest via the website.

    (Photos by Brenton Edwards)




  • 31 Oct 2023 1:14 PM | Anonymous

     Diagram showing energy burst travelling from a distant galaxy(Story adapted from Macquarie University).

    An eight-billion-year-old burst of energy has been discovered, demonstrating that we can detect and measure matter between galaxies. The discovery opens a path to using fast radio bursts to explore the expansion of the Universe and ultimately even ‘weigh’ the Universe.

    But it will require even more powerful telescopes.

    In a paper published in Science, a global team led by Macquarie University’s Dr Stuart Ryder and Swinburne University of Technology’s Associate Professor Ryan Shannon, report on their discovery of the most ancient and distant fast radio burst located to date, about eight billion years old.

    The discovery smashes the team’s previous record by 50 per cent. It confirms that fast radio bursts (FRBs) can be used to measure the “missing” matter between galaxies.

    The source of the burst was shown to be a group of two or three galaxies that are merging, supporting current theories on the cause of fast radio bursts. The team also showed that eight billion years is about as far back as we can expect to see and pinpoint fast radio bursts with current telescopes.

    On 10 June 2022, CSIRO’s ASKAP radio telescope on Wajarri Yamaji Country was used to detect a fast radio burst, created in a cosmic event that released, in milliseconds, the equivalent of our Sun’s total emission over 30 years. 

    “Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,” says Dr Ryder, the first author on the paper. “Then we used the European Southern Observatory (ESO) Very Large Telescope (VLT) in Chile to search for the source galaxy, finding it to be older and further away than any other FRB source found to date, and likely within a small group of merging galaxies.”

    Named FRB 20220610A, the fast radio burst has reaffirmed the concept of weighing the Universe using data from FRBs. This was first demonstrated by the late Australian astronomer Jean-Pierre ‘J-P’ Macquart in a paper in Nature in 2020.

    “J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies,” says Dr Ryder. “This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe.”

    About 50 FRBs have been pinpointed to date – nearly half using ASKAP. The authors suggest we should be able to detect thousands of them across the sky, and at even greater distances.

    “While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,” says Associate Professor Shannon.

    And we will soon have the tools to do so. ASKAP is currently the best radio telescope to detect and locate FRBs. The international SKA telescopes now under construction in Western Australia and South Africa will be even better at allowing astronomers to locate even older and more distant FRBs. The nearly 40-metre mirror of ESO’s Extremely Large Telescope, currently under construction in the high, dry Chilean desert will then be needed to study their source galaxies.

    The project was a world-wide effort with researchers from ASTRON (Netherlands), Pontificia Universidad Católica de Valparaíso (Chile), Kavli Institute for the Physics and Mathematics of the Universe (Japan), SKA Observatory (UK), Northwestern University, UC Berkeley, and UC Santa Cruz (USA).

    Australian participants were Macquarie University, Swinburne University of Technology, CSIRO, ICRAR/Curtin University, ASTRO 3D, and University of Sydney.

    Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology.

    “If we count up the amount of normal matter in the Universe – the atoms that we are all made of – we find that more than half of what should be there today is missing,” says Associate Professor Shannon.

    “We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques.

    “Fast radio bursts sense this ionised material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies.”

    CSIRO’s ASKAP radio telescope is situated at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in Western Australia, about 800 kilometres north of Perth. 

    Currently, 16 countries are partners in the SKA Observatory, which is building two radio telescopes. SKA-Low (the low frequency telescope) – at the same site as ASKAP – will comprise 131,072 two-metre-tall antennas, while SKA-Mid (the mid frequency telescope) in South Africa will comprise 197 dishes.

    The Very Large Telescope (VLT) has four eight-metre mirrors and is operated by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. Australia is a strategic partner of ESO, giving Australian astronomers access to the VLT and the opportunity to contribute new technologies to it.

    Australian astronomers are also hoping to gain access to ESO’s Extremely Large Telescope when it starts operation later this decade. The ELT will be able to deliver images 15 times sharper than the Hubble Space Telescope.


Powered by Wild Apricot Membership Software