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Yumeng Yang, Spin InfoTech Lab, ShanghaiTech University

We congratulate the Spin InfoTech Lab led by 
Prof. Yumeng Yang at ShanghaiTech University for 
realizing fast and energy-efficient magnetization 
switching. Through charge-spin conversion based 
on the anomalous Hall effect in ferromagnetic 
materials, this result can be used in a magnetic 
random access memory (MRAM) bit to improve 
reliability, memory density, and speed. This work 
will greatly benefit the commercialization 
of next-generation MRAM technology, which is 
one of the most promising candidates for 
high-performance neuromorphic computing. 

We are excited to continue our collaboration and 
look forward to further spectacular results.
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Juxtapositions
Welcome to the final issue of Australian 
Physics for 2021. This year, the world 
has been re-acquainted with the Greek 
alphabet with special introductions to 
a, k, d, and o. Meanwhile, “strollout” 
was crowned Australian word of the 
year. Various other events in Australia 
and abroad emphasised the state 
of motion of things. While, on the 
scale of the universe, motion appears 
relatively orderly, humankind lives 
in an interesting anisotropic local 
minimum full of juxtapositions, 
always on the border between chaos 
and order. That contrast is reflected 
in this issue. Our articles feature, on 
the one side, a discussion of optical 
metasurfaces where control, order, and 
symmetry rule. On the other side, we 
feature an exploration of the Lyapunov 
exponent that characterises chaotic system behaviour.

It is worth noting the contributions students have made to this 
issue of the magazine. The article on the chaotic behaviour of the 
double pendulum was written by a final year student at Barker 
College, NSW, and an undergraduate student from University of 
Massachusetts, Boston, contributed the book review on topology. 
Both pieces deal with non-trivial matters and underscore that there 
is a generation of engaged physicists joining the community.

Our Young Physicists’ column digs into the distinctions between 
weight and mass, and the considerable effort physicists invest 
in precision in both language and measurement. This precision 
is valuable to the wider community, as #PhysicsGotMeHere 
demonstrates. It prepares for other careers when combined with 
passion, be it for making connections through communication or 
supporting the animals who are such an important part of our lives.

So now with holidays approaching, we wish you a very happy Festive 
Season and all the best for 2022. And as always, if you fancy a little 
physics writing, you know how to contact us.

Best wishes,  
 
David Hoxley and Peter Kappen.
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Advocacy on the ARC “no-preprint rule” 
Of all the activities the AIP undertakes to promote the 
role of physics in Australia, one of the most important is 
advocating on behalf of the profession and our members. 
In the last few months, the issue that has most occupied 
our thoughts in the advocacy space has been the “no-
preprint rule”, and the ramifications of that rule for our 
members.

This issue first came to light in August, when we learnt 
that a number of Future Fellowship and Discovery 
Early Career Researcher Award (DECRA) applications 
had been ruled ineligible by the Australian Research 
Council (ARC). This was due to a violation of a new 
and poorly understood ARC rule that forbid reference 
to preprints anywhere in a grant application, including 
the project description.

Fellowship applicants, caught unaware by the rule 
change, were dismayed and distressed to discover that 
their chance of a fellowship had been dashed. Physics 
was hard-hit. In fact, all 32 applications ruled ineligible 
were from physics or astronomy. The AIP email box was 
soon full of personal stories of lost opportunity.

It is perhaps no surprise that physics was strongly 
impacted by this unexpected rule change. We routinely 
use preprints for rapid dissemination of the latest 
developments. It is a standard way of doing business. 
Physicists pioneered the arXiv electronic preprint 
repository over 30 years ago and were using paper 
preprints long before that. These days, preprint servers 
are used to house all manner of scientific documents 
including PhD theses, software manuals, technical 
design reports, and the like. Indeed, for many of us, it 
is difficult to imagine how to fairly and accurately cite 
the relevant literature without referring to an arXiv 
document!

The AIP acted swiftly to prepare a submission to the 
ARC, together with other stakeholders, and to get the 
message out in the media. We coordinated an open letter 
to the ARC in conjunction with the professional societies 
in astronomy (ASA), chemistry (RACI) mathematics 
(AustMS), which was co-signed by over 50 leaders in 
physical sciences in Australia. It was pleasing to see the 
relevant professional bodies join forces to address this 
issue of mutual concern. 

Our letter urged the ARC to rescind their rule in 
future funding rounds. We advocated that the ARC 

explore avenues to 
support the fellowship 
applicants affected, and 
recommended that future 
changes be subject to 
wider consultation with 
researchers and peak 
scientific bodies.

We were pleased to see 
that the ARC listened 
to the community and 

removed the “no-preprint” rule for future funding 
rounds. However, we remain concerned about the fate 
of the 32 fellowship applications ruled ineligible. Formal 
appeals have been submitted to the ARC by many of 
those applicants, with outcomes that are as yet unknown. 
In a follow up letter to the ARC in October, again co-
signed by the AIP, RACI, ASA and AustMS, we stressed 
the need for fair resolutions, and transparency around 
process.

It was particularly unfortunate that those caught out 
by the “no-preprint” rule were DECRA and Future 
Fellowship candidates. These grants are designed to 
attract and retain some of our brightest and most 
promising young researchers at critical career points. 
For the health of the physics profession, this is precisely 
the point where we can’t afford to lose talented young 
people.

The AIP will continue to monitor this issue and will 
speak out again if necessary. The results of the appeals 
process is clearly on our radar, together with possible 
impacts on the Discovery Project funding outcomes 
that are yet to be announced.

The preprint saga highlights the importance of 
professional societies like the AIP. Providing a voice 
for physics in Australia, we are in unique position to 
advocate on behalf of the profession, without worrying 
about stepping on anyone’s toes. When we can 
collaborate with fellow professional societies on issues of 
common interest or concern, it makes our message to 
government and policy makers all the stronger.

[1] See www.aip.org.au/advocacy for the AIP open letters to the ARC 
on the “no-preprint” rule, and the response received from the ARC.

Nicole Bell, AIP Vice President

From the Executive
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Metasurfaces are made of artificial subwavelength 
elements with small thickness which provides novel 
capability to manipulate electromagnetic waves [1]. 
Well before the exploration of metasurfaces, tailoring 
the light scattering with planar optical structures has 
been pursued with diffractive optical elements, such 
as dielectric gratings [2]. The concept of metasurfaces 
provides much broader and deeper insights and many 
more degrees of freedom to play with for complete 
control of light. Metasurfaces are characterised by 
generally planar geometry and reduced dimensionality, 
and usually consist of arrays of optical resonators 
with spatially varying geometric parameters and 
subwavelength separation (see two examples in Figure 
1). Upon interaction with light, engineering of the 
spatially varying optical response allows one to mould 
the optical wavefronts at will. In contrast to conventional 
optical components that achieve wavefront engineering 
by phase accumulation through light propagation in a 
medium, metasurfaces provide new degrees of freedom 
to control the phase, amplitude, and polarisation of 
light waves with subwavelength resolution, as well as to 
accomplish wavefront shaping within a distance much 

less than the wavelength of light [3]. The outstanding 
optical properties of dielectric metasurfaces drive the 
development of ultrathin optical elements and devices, 
whether showing novel optical phenomena or new 
functionalities outperforming their traditional bulky 
counterparts. As the field of metasurfaces is rapidly 
growing, many review articles focusing on different 
areas can be found in the literature [4-7]. 

Metasurfaces consist of carefully arranged “unit cells” 
or “meta-atoms” with subwavelength structures. The 
optical response (phase, amplitude, and polarisation) of 
the meta-atom changes with its geometry (height, width, 
material, etc). The meta-atoms are arranged into arrays 
to provide specific variations of parameters, depending 
on required functionalities. Meta-atoms can operate 
as subwavelength resonators supporting multipolar 
Mie resonances [3], or they can contribute to averaged 
parameters like metamaterials [4]. 

The concept of optical metasurfaces have been applied 
to demonstrate many exotic optical phenomena and 
various useful planar optical devices. Many of these 
metasurface-based applications look like very promising 
alternatives to replace conventional optical elements 
and devices, as they largely benefit from ultrathin, 
lightweight, and ultracompact properties, providing the 
possibility of overcoming several limitations suffered 
by their traditional counterparts, and can demonstrate 
versatile novel functionalities. Figure 2 summarises 
some metasurface-based functionalities aimed at 
polarisation control and wavefront control. For example, 
conventional polarisation control employs birefringence 
of crystals, where the required phase retardation between 
two orthogonally polarised wave components can be 
accumulated through light propagation. As a result, the 

Optical metasurfaces 
Yuri Kivshar
Distinguished Professor, Nonlinear Physics Center, Research School of Physics 
Australian National University
yuri.kivshar@anu.edu.au

During the past decade we observed the rapid development of the field of optical metasurfaces, 
two-dimensional planar structures composed of optical resonators of different shapes and types. 
Metasurfaces have become a highly demanding field of research due to their exceptional abilities to 
manipulate light and versatility in applications of ultrathin optical devices. Metasurfaces have been 
suggested for a complete control of light−matter interaction with subwavelength structures, and they 
have been explored widely for various applications such as bending of light, metalenses, metaholograms, 
and nonlinear optics. Here we provide a general insight into the field and discuss some functionalities of 
metasurfaces highlighting their biomedical, computational, and quantum applications. 

Figure 1: Examples of two mid-infrared metasurfaces 
designed and fabricated for optical biosensing (above) and 
flat-lens focusing (below). Metasurfaces are composed of 
Ge resonators on Al2O3 membranes [8].
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conventional setups for polarisation control are usually 
bulky and suffer from several limitations such as narrow 
operating bandwidth and limited choice of materials. 
Motivation to replace bulky optical components boosts 
the development of metasurface-based wave plates, 
vortex converters, lenses and holograms operating in 
different frequency regimes.

Wavefront engineering for conventional refractive 
lenses is based on the surface topography or the spatial 
refractive-index variation of the optical transparent 
media. Under such a framework, the beam profiles are 
altered according to the phase accumulation along the 
optical path through these lensing devices. A possibility 
to control polarisation with metasurfaces motivates the 
implementation of polarimetry flat-optics devices for 
sensing the polarisation state or determination of the 
Stokes parameters of an arbitrary light source. 

Another interesting platform for metasurfaces is 
computer-generated holograms, which requires 
careful engineering of local phase, amplitude, and 
polarisation response to obtain high-quality images. 
Metasurface-based devices applied to vortex-beam 
generation have recently received tremendous interest 
due to their various promising applications in high-

resolution microscopy, optical tweezers, and classical 
and quantum communication technology. Thanks to 
the advances in nanofabrication technologies, these 
low-cost, large-area, and mass productive techniques 
have sped up the development of static metadevices and 
are gradually becoming mature. It is expected that flat 
optical components based on dielectric metasurfaces 
will appear in our daily life soon bringing complexity of 
optical components and new functionalities [9]. Recent 
perspective [7] suggests four major promising paths 
for the future development of the field of metasurfaces 

Figure 3: Major milestones and selected directions for the research on optical metasurfaces and their applications to other 
fields (for more details and the extended diagram, see [7]).

Figure 2: Metasurface-empowered applications of flat 
optics for various functionalities: polarisation control, 
wavefront shaping, lensing, and holography (adopted 
with permissions from [4]). 
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(see Fig. 3). Specifically, this includes metasurfaces 
integrated with low-dimensional materials, and also 
metasurfaces for biomedical, computational, and 
quantum applications. Hybridising metasurfaces with 
two-dimensional materials, such as transition metal 
dichalcogenides (TMDCs) can realise advanced active 
manipulations of light−matter interactions at the 
nanoscale in a designer manner, offering a new platform 
for next-generation photonics. For new applications 
such as in biological systems, metasurfaces can largely 
enhance sensitivity of biomolecular detection, selectively 
distinguish chiral biomolecules, and achieve high-
resolution bioimaging. Most recent application of 
metasurfaces can be found in quantum technologies [10]. 
Meditated quantum entanglement and a new platform 
for integrated quantum devices may become possible 
with emerging metasurfaces. Finally, novel applications 
may emerge from advanced computer algorithms 
(machine learning, neural networks), topological physics, 
time-variant metasurfaces which would allow enriching 
dimensionality, as well as combining metasurfaces with 
microelectro-mechanical systems (MEMS), and many 
other continuously emerging advances. 

One of the promising new directions for metasurfaces 
is biosensing and surface-enhanced spectroscopies 
(see Figure 4, adopted from [11]). Recently, we have 
suggested and demonstrated a novel approach for 
mid-IR spectroscopy that leverages pixelated dielectric 
metasurfaces to spatially encode molecular absorption 
signatures into chemically specific two-dimensional 
barcodes [12,13]. The method is based on high-Q 
resonances created by using symmetry-broken resonator 
arrays supporting bound states in the continuum [14,15]. 
By assigning different resonance frequencies to different 

pixels, one-to-one mapping between spectral and spatial 
information is obtained. Reflectance signal variations 
for different pixels are correlated with the strength of 
the molecular absorption signatures, which are read out 
in an imaging-based set-up to yield molecular barcodes. 
Crucially, such molecular imaging can be performed 
using broadband light sources and detectors, enabling 
spectrometer-less operation in a miniaturised platform 
for on-site applications. Multi-component samples 
containing biomolecules, environmental pollutants, and 
polymers can be analysed by comparing the barcode 
of the unknown mixture with a library of reference 
barcodes, aided by advanced pattern recognition and 
machine learning techniques. 

Finally, metasurfaces provide novel opportunities for 
nonlinear optics expanding it into new directions 
with novel phenomena and functionalities. Nonlinear 
effects in thin, artificially structured materials such as 
metasurfaces do not rely on phase-matching conditions 
and symmetry-related selection rules of natural materials, 
and they may be substantially enhanced by strong local 
fields and collective resonances inside the metasurface 
nanostructures [16]. 

Conclusions
As widely accepted, photonics plays an important role 
in our everyday life, and it is closely connected with the 
progress of technology and many scientific discoveries. 
The recently emerged field of flat optics based on 
metasurfaces helps to advance many grand challenges in 
photonics. One of those challenges is to realise tunable 
and switchable optical ultrathin and ultralight devices 
with dynamic and active control of light including 
its amplitude, phase, and polarisation. Metasurfaces 
emerged first as simple beam-steering structures, but 
they provide important novel functionalities, open new 
applications, and drive new discoveries. Integration of 
metasurfaces with quantum emitters and creation of 
multifunctional modulators for light would naturally 
follow those initial steps. We believe that further advances 
in fundamental research in optical metasurfaces and 
technological innovations in flat optics will uncover their 
tremendous potential making a rapid impact on science, 
technology, and society. In addition, there are many 
other areas in physics and photonics which will benefit 
from metasurfaces and undergo rapid developments. 
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Miroslav D Filipović and Nicholas F H Tothill

ABOUT THE BOOK
Astronomy has traditionally relied on capturing photons from cosmic  
sources to be able to understand the universe. During the 20th and 21st 
centuries, different messengers have been added to the astronomer’s 
toolset: cosmic rays, neutrinos, and most recently gravitational waves. 
The goal of this book is to provide a broad understanding of these 
messengers and their relationship to each other. The unique physics of 
each messenger is introduced, as well as the physics of their detection 
and interpretation. Part of AAS-IOP Astronomy Series.

ABOUT THE AUTHORS
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A planar double pendulum is constructed by attaching two point masses together, with one of the 
point masses connected to a pivot point. It is an interesting dynamic system because of its tendency 
to exhibit chaotic motion, which can be quantified using the Lyapunov exponent. If the Lyapunov 
exponent is positive, the system is considered chaotic. If the Lyapunov exponent is negative, instead 
of being chaotic, the system produces periodic motion. Previous research has determined that at a 1:1 
length ratio (between the two arms), the pendulum’s motion is periodic, while if the length ratio is 
increased to 1:3, the pendulum’s motion is chaotic. The work presented here aims to increase the 
precision of the measured length ratio representing the transitional point between periodic and 
chaotic motion. A computational simulation that provided a numerical solution to the Euler-Lagrange 
equations of the pendulum was used to determine the Lyapunov exponent for differing length ratios. 
The results demonstrate that the transitional length ratio lies between 1:2.34375 and 1:2.375. 

The planar double pendulum system 
A planar double pendulum is defined by attaching 
twopoint masses with a rigid, weightless rod, with the 
top point mass connected to a pivot point with a 
second rigid, weightless rod as seen in Figure 1 [1]. 
The length ratio of a 
pendulum is expressed 
as L1:L2. A pendulum 
is a Hamiltonian sys-
tem, meaning its gravi-
tational potential 
energy and kinetic 
energy is constantly 
exchanged and con-
served throughout its 
motion [2]. Most im-
portantly, the system 
has tendencies to 
produce chaotic mo-
tion [3, 4].  

Chaotic motion and the Lyapunov 
exponent 
The Lyapunov exponent, 𝜆𝜆, as defined in Equation 1, 
has proven to be the most useful quantification of 

chaos [5], and as such was used to quantify chaos in 
this study. A system is chaotic when 𝜆𝜆 is > 0, and it 
is periodic when 𝜆𝜆 is < 0 [6]. Qualitatively, chaos is 
the physical phenomenon where a dynamic system is 
highly dependent on its initial conditions and its mo-
tion is seemingly random [7]. 𝜆𝜆 is defined as the 
average exponential rate of divergence of infini-
tesimally close orbits in phase space [6]. 
Infinitesimally close orbits within phase space 
correspond to nearly identical physical states, hence 
an exponential divergence of these orbits implies a 
rapid loss of predictability of the system. 
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Danforth’s algorithm which determines 𝜆𝜆 (summa-
rised by Equation 2) has been used to quantify the 
chaos of a pendulum [1, 7]. Despite the use of 
Danforth’s algorithm, none of these studies pre-
sented a complete and easily repeatable method for 
the algorithm. Therefore, this study includes a 
repeatable summary of Danforth’s algorithm for 
calculating 𝜆𝜆 of a pendulum in Part 3 of the 
methodology.  

 

Figure 1: The planar double 
pendulum system. Adapted 
from [18]. 
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As per the details of Danforth’s algorithm, Galloway 
and Macaskill [8] suggest that in order for 𝜆𝜆 of a pen-
dulum to be calculated, 𝛼𝛼	 = 	𝜃𝜃!, 𝜃𝜃", �̇�𝜃!, 𝜃𝜃"̇, with the 

set '𝜖𝜖𝜖𝜖#$*******⃑ , being the set of column vectors in Equa-
tion 3. 
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The importance of Gram-Schmidt orthonormali-
sation is to ensure that the displacement vectors do 
not collapse onto the dominant eigenvectors of the 
system, which increases the uncertainty of the 𝜆𝜆 
calculation [8, 9].  

The principle of least action 
Rather than utilising Newton’s second law of motion, 
the principle of least action was used to formulate the 
pendulum’s simulation and Euler-Lagrange equa-
tions [10]. Feynman’s definition of the principle of 
least action is “the average kinetic energy less the 
average potential energy is as little as possible for the 
path of an object going from one point to another” 
[11]. The action functional Si of a pendulum is given 
by:  

𝑆𝑆+ = ∫ (
/
𝑚𝑚𝜃𝜃0̇

/ −𝑚𝑚𝑚𝑚𝜃𝜃+𝑑𝑑𝑡𝑡
!"
!!

  (4) 

This functional is relatively simple to compute 
numerically compared to the forces and acceleration 
of the masses. The actual path that is taken by the 
masses is that which minimises the action integral 
[10, 11]. One consequence of this is the Euler-
Lagrange equation: 

!
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#ℒ
#%!̇	

− #ℒ
#%"

= 0  (5) 

Testing the chaos of the planar double 
pendulum 
Extant research into the pendulum has predomi-
nantly been through the use of a computational simu-
lation. This is due to the pendulum’s sensitivity to its 

initial conditions, hence making it very challenging 
for a built model to undergo a valid testing method 
that can be reliably repeated. 

The Kolmogorov–Arnold–Moser theorem must be 
considered as it suggests that for certain initial condi-
tions, the system may exhibit quasi-periodic motion, 
which is neither periodic nor chaotic [2]. The theo-
rem states that at low energies (in the region of length 
ratio 1:1 to 1:3), the pendulum system’s Euler-
Lagrange equations may be integrable, meaning that 
if the phase space trajectory is subjected to a weak 
nonlinear perturbation, a portion of the invariant 
torus survives. This torus is the topological surface 
on which the phase space trajectory is bounded. 
Hence in this investigation, the motion of the pendu-
lum near the transition point was investigated for 
possible quasi-periodicity, which can be seen if 𝜆𝜆 falls 
within the approximate range of 0 ± 0.05. 

Another study into the pendulum system analysed 
the chaos of the system through the Lyapunov expo-
nent [12]. This study chose to investigate the 
dynamics of a pendulum in regard to its total energy, 
E, and provided the knowledge that there is a clear 
boundary between periodic and chaotic motion at 
E≈4.46. This suggests that there are specific charac-
teristics of a pendulum that makes it chaotic. 

Levien and Tan’s research provides valuable infor-
mation on 𝜆𝜆 as the initial angle increases [1].  
It was found that the system is chaotic if  
𝜃𝜃((0) is > 	𝜋𝜋/3. This again showcases a specific 
characteristic of the pendulum system that makes it 
chaotic. 

Gupta et al. explored the chaotic behaviour of a pen-
dulum numerically [7]. The simulation used by Gupta 
et al. was a MATLAB simulation, allowing them to 
measure how the mass and length ratios influenced 
the chaos of the system. It found that 𝜆𝜆 increases 
when the mass ratio is increased. It was also found 
that 𝜆𝜆 increases when the length ratio is increased, 
with the system being periodic at length ratio 1:1 and 
chaotic at 1:3 [7]. However, the researchers did not 
find a more precise length ratio at which the system 
transitions from periodic to chaotic motion.  

   

This study is designed to follow on from  
Gupta et al.’s paper, with the goal being to increase 
the precision of the measured length ratio 
representing the transitional point between periodic 
and chaotic motion, referred to as the ‘transitional 
length ratio’ in the work presented here. This is 
important for controlling and improving dynamic 
systems that are derived from pendulums, such as 
double-armed robots [13]. With the increase in 
robotics in industry, double pendulums have become 
a critical facet of manufacturing. Knowing when a 
double pendulum can produce chaotic motion will 
prove to be important in understanding and 
optimising pendulum-based robotic manufacturing 
systems. 

Part 1: Modelling the dynamics of a 
pendulum 
The reasoning for this modelling was to determine 
the Euler-Lagrange equations of a pendulum system. 
These two equations (one for each mass) govern the 
dynamics of the masses and formed the basis of the 
computational simulation. Some simplification steps 
have been omitted in the modelling for the sake of 
brevity, but all equations are accurate to the dynamics 
of the pendulum system. 

The key initial conditions that must be defined for 
this system are the length of the pendulums’ arm, Li,  
the point mass, mi ,  and the angular displacement 
from the vertical of the two masses (qi in radians), 
where i = 1, 2 indexing the two point masses. 

The Lagrangian ℒ for a system is known to be equal 
to: 

ℒ = 𝐾𝐾! + 𝐾𝐾" − 𝑈𝑈! − 𝑈𝑈" 

∴ 	ℒ = 	
1
2
(𝑚𝑚# +𝑚𝑚$)𝐿𝐿#$𝜃𝜃#̇

$ +
1
2𝑚𝑚$𝐿𝐿$$𝜃𝜃$̇

$

+𝑚𝑚$𝐿𝐿#𝐿𝐿$𝜃𝜃#̇𝜃𝜃$̇ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃# + 𝜃𝜃$)
+ 𝑔𝑔(𝑚𝑚# +𝑚𝑚$)𝐿𝐿# 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃# + 𝑔𝑔𝑚𝑚$𝐿𝐿$ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃$ 	

Using the Euler-Lagrange equation (Equation 5), the 
equations of motion of the two masses can be ob-
tained: 

𝑆𝑆# = 𝐿𝐿# 3𝜃𝜃$̈𝐿𝐿$𝑚𝑚$ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃# − 𝜃𝜃$)

+ 6𝜃𝜃$̇7
$𝐿𝐿$𝑚𝑚$ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃# − 𝜃𝜃$)

+ (𝑚𝑚#+𝑚𝑚$)6𝑔𝑔 𝑐𝑐𝑠𝑠𝑠𝑠 𝜃𝜃# + 𝐿𝐿# 𝜃𝜃#̈7	: = 0 

𝑆𝑆$ = 𝐿𝐿$𝑚𝑚$ &−(𝜃𝜃#̇+
$𝐿𝐿# 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃# − 𝜃𝜃$)

+ 𝜃𝜃#̈𝐿𝐿# 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃# − 𝜃𝜃$) + 𝜃𝜃$̈𝐿𝐿$ + 𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃$)6
= 0	

Due to their non-linear nature, there is no known 
method that solves the Euler-Lagrange equations 
analytically. However, they can be computed numer-
ically using a computational program, one example 
being the dsolve{ } function in the Maplesoft compu-
tational simulator [14], which was used in this study. 
This method, however, can provide some uncertainty 
within the Lyapunov exponent calculation as a 
numerical solution is not an exact solution to the 
differential equations. 

Part 2: Computing the transitional length 
ratio using the bisection method 
In order to find precisely the transitional length ratio 
(where the pendulum transitions from periodic to 
chaotic motion), the bisection method was used. This 
method has not been used previously in research into 
a pendulum’s dynamics but is a common method for 
finding the zeros of polynomials. For this work, this 
method can be thought of as trying to find the length 
ratio that makes 𝜆𝜆 as close to 0 as possible, i.e., the 
length ratio’s zero. During Test 1, the known 
transitional length ratio bound is between 1:1 and 1:3 
as established from extant research [7]. The length 
ratio halfway between this bound (i.e., 1:2) will be 
tested and determined to be either chaotic or 
periodic. This will set a new bound for the transi-
tional length ratio. The length ratio halfway between 
the new bound will then be tested, ‘telescoping’ the 
transitional length ratio to its precise value after re-
peating multiple times. 

Part 3: Steps taken to calculate the 
Lyapunov exponent for differing length 
ratios using Danforth’s algorithm 
A Maplesoft computational program was generated 
to simulate the motion of a double pendulum system, 
using the Euler-Lagrange equations for S1 and S2, the 
initial conditions in Table 1 and the dsolve{ } function. 
𝑣𝑣#****⃑  was defined as the vector representing the initial 
conditions of the pendulum in the phase space of the 
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As per the details of Danforth’s algorithm, Galloway 
and Macaskill [8] suggest that in order for 𝜆𝜆 of a pen-
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set '𝜖𝜖𝜖𝜖#$*******⃑ , being the set of column vectors in Equa-
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The importance of Gram-Schmidt orthonormali-
sation is to ensure that the displacement vectors do 
not collapse onto the dominant eigenvectors of the 
system, which increases the uncertainty of the 𝜆𝜆 
calculation [8, 9].  

The principle of least action 
Rather than utilising Newton’s second law of motion, 
the principle of least action was used to formulate the 
pendulum’s simulation and Euler-Lagrange equa-
tions [10]. Feynman’s definition of the principle of 
least action is “the average kinetic energy less the 
average potential energy is as little as possible for the 
path of an object going from one point to another” 
[11]. The action functional Si of a pendulum is given 
by:  
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This functional is relatively simple to compute 
numerically compared to the forces and acceleration 
of the masses. The actual path that is taken by the 
masses is that which minimises the action integral 
[10, 11]. One consequence of this is the Euler-
Lagrange equation: 
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for a built model to undergo a valid testing method 
that can be reliably repeated. 
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ratio 1:1 to 1:3), the pendulum system’s Euler-
Lagrange equations may be integrable, meaning that 
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nonlinear perturbation, a portion of the invariant 
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Hence in this investigation, the motion of the pendu-
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possible quasi-periodicity, which can be seen if 𝜆𝜆 falls 
within the approximate range of 0 ± 0.05. 
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E, and provided the knowledge that there is a clear 
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𝜃𝜃((0) is > 	𝜋𝜋/3. This again showcases a specific 
characteristic of the pendulum system that makes it 
chaotic. 

Gupta et al. explored the chaotic behaviour of a pen-
dulum numerically [7]. The simulation used by Gupta 
et al. was a MATLAB simulation, allowing them to 
measure how the mass and length ratios influenced 
the chaos of the system. It found that 𝜆𝜆 increases 
when the mass ratio is increased. It was also found 
that 𝜆𝜆 increases when the length ratio is increased, 
with the system being periodic at length ratio 1:1 and 
chaotic at 1:3 [7]. However, the researchers did not 
find a more precise length ratio at which the system 
transitions from periodic to chaotic motion.  
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have been omitted in the modelling for the sake of 
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Due to their non-linear nature, there is no known 
method that solves the Euler-Lagrange equations 
analytically. However, they can be computed numer-
ically using a computational program, one example 
being the dsolve{ } function in the Maplesoft compu-
tational simulator [14], which was used in this study. 
This method, however, can provide some uncertainty 
within the Lyapunov exponent calculation as a 
numerical solution is not an exact solution to the 
differential equations. 

Part 2: Computing the transitional length 
ratio using the bisection method 
In order to find precisely the transitional length ratio 
(where the pendulum transitions from periodic to 
chaotic motion), the bisection method was used. This 
method has not been used previously in research into 
a pendulum’s dynamics but is a common method for 
finding the zeros of polynomials. For this work, this 
method can be thought of as trying to find the length 
ratio that makes 𝜆𝜆 as close to 0 as possible, i.e., the 
length ratio’s zero. During Test 1, the known 
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the new bound will then be tested, ‘telescoping’ the 
transitional length ratio to its precise value after re-
peating multiple times. 

Part 3: Steps taken to calculate the 
Lyapunov exponent for differing length 
ratios using Danforth’s algorithm 
A Maplesoft computational program was generated 
to simulate the motion of a double pendulum system, 
using the Euler-Lagrange equations for S1 and S2, the 
initial conditions in Table 1 and the dsolve{ } function. 
𝑣𝑣#****⃑  was defined as the vector representing the initial 
conditions of the pendulum in the phase space of the 
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pendulum system. 𝜀𝜀𝑦𝑦()'''''''⃑  (𝛼𝛼	 = 	𝜃𝜃!, 𝜃𝜃", �̇�𝜃!, 𝜃𝜃"̇) was de-
fined as the basis displacement vectors of the four 
dimensions of the phase space at the limit as 𝜖𝜖 → 0. 
The five conditions (𝑣𝑣(''''⃑ , 𝜀𝜀𝑦𝑦()'''''''⃑ ) were iterated for a 
small time-step (0.01 seconds), generating 𝑣𝑣(*+'''''''''⃑  and 
the four 𝑘𝑘(*+)'''''''''⃑ . The largest magnitude of the differ-

ence between the vectors 𝑣𝑣(*+'''''''''⃑  and 𝑘𝑘(*+)'''''''''⃑  was 

recorded, i.e. .𝑣𝑣(*+'''''''''⃑ 		–		𝑘𝑘(*+)'''''''''⃑ 	. = 	.𝑦𝑦(*+)'''''''''⃑ ..  

 

The four 𝑘𝑘(*+)'''''''''⃑  were orthonormalised using Gram-
Schmidt orthonormalisation, generating the four 

𝜀𝜀𝑦𝑦(*+)'''''''''''⃑ . These steps were repeated for 150 seconds 

(i.e. n = 15000) and 𝜆𝜆(𝑡𝑡) was calculated utilising 
Equation 2. 

If 𝜆𝜆 was positive (ie. the system is chaotic), the simu-
lation was repeated for the length ratio halfway be-
tween the tested ratio and the closest known ratio 
that produces periodic motion; if 𝜆𝜆 was negative (ie. 
the system is periodic), the simulation was repeated 
for the length ratio halfway between the tested ratio 
and the closest known ratio that produces chaotic 
motion. 

Results  
The Lyapunov exponent time series of each length 
ratio was generated within the Maplesoft simulation. 
For each length ratio, 𝜆𝜆	 initially fluctuated (even be-
tween positive and negative values) and then settled 
to a more consistent value which was observed and 
recorded to characterise the motion of the system 
(Figure 2). Figure 2A shows a time series with a nega-
tive Lyapunov exponent. In contrast, Figure 2B 
shows 𝜆𝜆 to be positive. At length ratio 1:2.359375 
(Figure 2C) it cannot be determined whether 𝜆𝜆 is 
positive or negative with certainty. It was determined 
whether the motion is periodic (𝜆𝜆 < 0) and therefore 
if the length of the second arm was to be increased, 

Table 1: Initial conditions used for the computational 
simulation.  

Parameter Value 
L1 1 m 
L2 2 m  
𝜃𝜃!(0) 0.2 rad 
𝜃𝜃"(0) 0.2828 rad 
𝜃𝜃!̇(0) 0 s-1 

𝜃𝜃"̇(0) 0 s-1 
m1 1 kg 
m2 1 kg 
g -9.8 ms-2 

 

 
Figure 2: Lyapunov exponent time series for initial length ratio of 1:2 (A) with iterative steps to length ratio 
1:2.359375 (C), where the sign of the Lyapunov exponent is undetermined. 

 

 

   

or chaotic (𝜆𝜆 > 0) and therefore the length of the 
second arm was to be decreased. Seven tests were 
completed in total and the transitional length ratio 
was ‘telescoped’ to a more precise measurement with 
each test. Three of these tests are shown in Figure 2. 
This bisection process of varying the length ratio 
based on 𝜆𝜆 continued until there was uncertainty in 
whether 𝜆𝜆 was positive or negative, i.e., the system 
was producing quasi-periodic motion. 

The average value of 𝜆𝜆 between the time period of 
40s to 150s was found within the Maplesoft compu-
tational program, using the integral in Equation 6. 
This time period was chosen as 𝜆𝜆(𝑡𝑡) becomes rela-
tively stable at t = 40, and the Maplesoft simulation 
could not compute 𝜆𝜆(𝑡𝑡) for values >~150. The 
average value, the value at t = 40 and the value at  
t = 150 have been summarised in Table 2. 
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Using the data in Table 2, Figure 3 shows the rela-
tionship between the average Lyapunov exponent 
and the length ratio, expressed as the fraction  
L2 ÷ L1. 

Discussion 
As per the literature review, if 𝜆𝜆 is < 0, the system is 
periodic, and if 𝜆𝜆 is > 0, the system is chaotic [6]. 
From the visual and numerical analysis of the 
Lyapunov exponent times series, between the length 
ratios 1:2 to 1:2.34375,  𝜆𝜆  was negative and so the 
pendulum system was periodic. Furthermore, it was 
shown both visually and numerically that at length 

ratios between 1:2375 and 1:2.5, the pendulum sys-
tem was chaotic as 𝜆𝜆 > 0. It can be inferred that the 
transitional length ratio lies between the length ratio 
of 1:234375 (the upper bound of periodic motion) 
and 1:2.375 (the lower bound of chaotic motion). 
This represents an improvement in precision of de-
termining the transitional length ratio by a factor of 
64 times in comparison to extant research [7]. As 
there was uncertainty in whether 𝜆𝜆 was positive or 
negative in Figure 2C, it was concluded that at the 
length ratio 1:2359375, the pendulum produced 
quasi-periodic motion. 

From the plot in Figure 3, it can be observed that 
there was a positive association between the 
Lyapunov exponent and the length ratio; however, an 
exact linear correspondence between the two 
variables was not evident from the data. One reason 
this could arise is due to errors within the Lyapunov 
exponent calculation. However, this was not likely to 
be the cause of this non-linear correspondence, as the 

Table 2: Lyapunov exponent values for each length ratio evaluated through the Maplesoft computational 
simulation. 

 

 

Figure 3: A plot of the average Lyapunov exponent as 
a function of the length ratio (expressed as the 
fraction 𝑳𝑳𝟐𝟐 ÷ 𝑳𝑳𝟏𝟏). 
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or chaotic (𝜆𝜆 > 0) and therefore the length of the 
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completed in total and the transitional length ratio 
was ‘telescoped’ to a more precise measurement with 
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computation simulation provided a numerical solu-
tion of the Euler-Lagrange equations that were accu-
rate to 1 part per 106 [15]. The exact uncertainties of 
the Lyapunov exponent calculations are quite hard to 
derive; however, they could be investigated in future 
research. Another explanation for this non-linear 
correspondence is that the two variables (length ratio 
and 𝜆𝜆) are correlated through a third variable, which 
may cause a change in both 𝜆𝜆 and the length ratio. 

One possible candidate of this third variable is the 
total energy of the system, which is increased as the 
length ratio increases [12]. Furthermore, there is evi-
dence that there is a clear boundary between periodic 
and chaotic motion at E ≈ 4.46 [12]. As the total 
energy is given by the sum of the gravitational 
potential energy, U, and the kinetic energy, K, E stays 
constant throughout the motion of the pendulum. 
Furthermore, within this study, at t = 0, K = 0. 
Because 𝑑𝑑𝑑𝑑/𝑑𝑑𝐿𝐿" =	−𝑔𝑔𝑚𝑚" cos 𝜃𝜃" = 9.41 > 0, it is 
clear that, when the length ratio is increased, the total 
energy of the system also increased. 

It is proposed that the more energy the pendulum 
system has, the more likely it will be chaotic. This is 
because the phase space velocity will have a larger 
magnitude and, hence, a slight perturbation to the 
phase space trajectory will have a larger proportional 
influence on the system. This may cause the phase 
space trajectory to diverge from its original path, i.e., 
produce chaotic motion [6]. 

Further research into the planar double pendulum 
might investigate the total energy of the system in 
two ways. The length ratio could be varied while 
ensuring that the total energy of the system stays con-
stant throughout the tests. This can be achieved by 
changing a variety of variables (𝑚𝑚, 𝜃𝜃, �̇�𝜃). If 𝜆𝜆 remains 
constant when the length ratio is changed and the 
total energy of the system is kept constant, it can be 
proposed that the length ratio is not the cause of the 
changing 𝜆𝜆 observed in this study. However, a 
relationship between E and 𝜆𝜆 would also need to be 
investigated. This can be done by keeping the length 
ratio constant and varying E. A proposed method 
would be to provide one mass with differing initial 
angular velocity, rather than the zero initial angular 
velocity that was used in this work. 

It is most likely that the reason for a pendulum’s cha-
otic motion is a combination of all the factors 
discussed above; however, this is not yet clear from 
known research [16]. 

Finally, this study only focused on length ratios 
between 1:1 and 1:3. At the limit as 𝐿𝐿" → ∞, the 
planar double pendulum system can be thought of as 
a planar pendulum system (i.e., only one mass on one 
rod), which is a periodic system [17]. This suggests 
there is another transitional length ratio, where the 
pendulum transitions from chaotic to periodic mo-
tion. A conclusion that can be drawn from this is that 
there may be a finite range of length ratios of a 
double pendulum system that produce chaotic mo-
tion, which could be investigated in future studies. 

To summarise, it is proposed that the increase in 
length ratio may not solely be the cause of the in-
crease in 𝜆𝜆. Other qualities of the system, specifically 
the total energy E, should now be investigated in 
order to determine if there are additional factors 
influencing the system’s chaotic motion. 

Conclusion  
Our project explored the transitional length ratio 
between periodic and chaotic motion of a planar 
double pendulum system. Through the use of a com-
putational simulation of a double pendulum, the 
chaos of the system was quantified and analysed 
through calculating the Lyapunov exponent (the 
accepted measure of chaotic motion). Previous 
research determined that the transitional length ratio 
lies between the bound of 1:1 and 1:3. The bisection 
method was used to increase the precision of this 
measurement, and it was determined that the 
transitional length ratio occurs between 1:2.34375 
and 1:2.375, improving the precision of this measure-
ment by a factor of 64.  
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relationship between E and 𝜆𝜆 would also need to be 
investigated. This can be done by keeping the length 
ratio constant and varying E. A proposed method 
would be to provide one mass with differing initial 
angular velocity, rather than the zero initial angular 
velocity that was used in this work. 

It is most likely that the reason for a pendulum’s cha-
otic motion is a combination of all the factors 
discussed above; however, this is not yet clear from 
known research [16]. 
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between 1:1 and 1:3. At the limit as 𝐿𝐿" → ∞, the 
planar double pendulum system can be thought of as 
a planar pendulum system (i.e., only one mass on one 
rod), which is a periodic system [17]. This suggests 
there is another transitional length ratio, where the 
pendulum transitions from chaotic to periodic mo-
tion. A conclusion that can be drawn from this is that 
there may be a finite range of length ratios of a 
double pendulum system that produce chaotic mo-
tion, which could be investigated in future studies. 

To summarise, it is proposed that the increase in 
length ratio may not solely be the cause of the in-
crease in 𝜆𝜆. Other qualities of the system, specifically 
the total energy E, should now be investigated in 
order to determine if there are additional factors 
influencing the system’s chaotic motion. 
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between periodic and chaotic motion of a planar 
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chaos of the system was quantified and analysed 
through calculating the Lyapunov exponent (the 
accepted measure of chaotic motion). Previous 
research determined that the transitional length ratio 
lies between the bound of 1:1 and 1:3. The bisection 
method was used to increase the precision of this 
measurement, and it was determined that the 
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and 1:2.375, improving the precision of this measure-
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Chemistry and especially the new Science Extension 
course supervising students to conduct university-
level research while in high school. His diverse 
research interests include education, leadership and 
science. 
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Editors’ Note   

We are delighted to present this technical article from a 
secondary school student. Australian Physics welcomes 
such high-quality articles from students who, otherwise, 
would have only very few options to publish their work.  

This piece by Harry Breden is of high standard. It 
acknowledges academic collaborators and builds on well-
established theory which is carefully referenced in the 
article. As such, it is an extension of established research, 
rather than new theory. Hence we think it is compatible 
with Australian Physics’ editorial policy to not publish 
original research that has not previously passed peer-
review. 

Encouraging young and upcoming scientists and giving 
them a platform is important. When we were met with 
enthusiasm about the opportunity to include this work in 
the magazine, we got a sense that the future of physics in 
Australia is potentially strong.  
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In other words, is the draft of a ship dependent on 
where in the world it is sailing? The answer to this 
question brings us back to considering the difference 
between mass and weight. We addressed this briefly 
in the buoyancy discussion. Just as an aside, as young 
physicists it’s important you should nurture your skills 
of explanation. Learn how to tell someone about science 
who is not a physicist – perhaps a younger sibling. If 
you can successfully explain the weird things we learn 
and already know about physics, then you can say you 
truly understand them. One of my favourite sayings 
are along these lines attributed to Albert Einstein: ‘The 
explanation you give as a scientist should be as simple as 
possible, but no simpler’ [1].

How would you explain the difference we physicists 
understand between mass and weight? In everyday life 
those words are often used interchangeably, but as we saw 
in the last article when calculating the draft of the ship 
Evergreen, they are not the same. The two quantities are 
certainly proportional, but mass is a fundamental unit. 
It cannot be split into other units. Weight on the one 
hand is actually a force, measured in Newtons (the S.I. 
unit for force) [2]. One Newton is the force required to 
accelerate a one kilogram mass to a velocity of one meter 
per second, over the interval of a second. On the other 
hand, mass is a measure of the amount of material in an 
object. We can say it’s the number of atoms that make 
up whatever it is we are measuring. 

When we talk about a weight being in kilograms 
then, it should really be described as kilograms force  
(kg-f), and we need to agree on the gravitational pull 
to use it as a standard. If we know the local value of 
the gravitational acceleration, which in physics is usually 
given the letter ‘g’, we can then work out the mass. 
There is an internationally agreed value of g, which is 
9.80665 m/s2. That doesn’t mean it’s the same all over 
the world, though. The variation with latitude is about 
0.5% for high latitude places, compared to the equator. 
For instance, in Sydney the value of g is 9.797 m/s2. If 
you live in Melbourne, it is 9.800 m/s2, and in London, 
England, it is 9.816 m/s2.

On Mars, g is only 3.721 m/s2. If you stood on Mars, 
you would weigh less than you do on Earth, because 
gravity is less. However, you would still have the same 
mass because you are made up of the same amount (and 
type) of ‘stuff’ (atoms). Next time you go in an elevator, 
take some scales with you and stand on them while you 
go up and down a few floors – what do you notice?

When we are explaining something, it is often useful to 
offer an illustration. Consider a sphere of pure silicon. 
Silicon is an abundant and remarkably useful element. 
I choose a ball of silicon as an example, because this is 
exactly what is used as our international standard mass. 
The Australian CSIRO have made a sphere of silicon for 
the international Avogadro project [3]. This shiny ball 
will be used as the new international kilogram reference 
object. It is exactly 1 kilogram, down to a precision of 10 
parts per billion.

At normal temperatures and pressures, silicon atoms like 
to stick to each other. So, silicon is said to be a solid 
material. It’s also a crystalline solid since the atoms 
stick to each other in a nice regular pattern. It is easy 
to distinguish silicon atoms from any atoms in the air 
around it. The gas atoms in the air don’t stick to each 
other, or stick to the silicon. They do regularly bump 
into the silicon atoms, but they won’t stay. Because of 

Weight and mass for young physicists 
Chris Hall, ANSTO Australian Synchrotron – christoh@ansto.gov.au
Clara Teniswood - clara.teniswood@gmail.com  

A reader response to the previous Young Physicists’ article about buoyancy raised an interesting 
question regarding the difference between weight and mass. Would the Ever Given sit higher or lower in 
the water of the canal if it was nearer the south pole? 

One kilogram silicon sphere. Source: [3].
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this, we may define a precise number of atoms in our 
ball of silicon, and therefore its mass. 

The question then is: how do we measure that mass? We 
could use a balance or some scales perhaps, but what if 
we were trying to make the measurement in a different 
gravity field, for instance on the Moon where gMoon = 1.62 
m/s2 ? The answer lies in another physical phenomenon 
that is dependent on mass: inertia. Inertia only depends 
on the mass and how fast the mass is moving. Inertia 
does not depend on gravitational pull. For example, on 
the International Space Station (ISS) the astronauts float 
around weightlessly (we leave it to you to figure out why 
they are weightless; it’s not because the ISS cruises a few 
hundred kilometres above the Earth’s surface). Even 
though astronauts are weightless on the ISS, they still 
have mass. They still need to push themselves off one 
end to float to the other, so they still need to overcome 
their own inertia to move. On the ISS, with weight 
out of the equation, one could devise measurements to 
measure mass. Down on Earth, measuring mass and 
weight gets more entangled, but there are ways to use 
inertia to measure mass.

Have you learnt about the physics of guitar strings? One 
thing that you may know is that the string will change 
its tune (frequency) depending on its length, how tightly 
it is pulled (tension) and, most importantly, its mass. If 
we assume the string is made from the same material all 
along its length, then we can define a property called 
linear mass density, which can substitute for mass. If we 
fix the string’s length and tension, then more massive 
strings sound lower than thinner ones. So, here is a way of 
measuring mass. A mass-measuring device that uses this 
technique is called an Inertial Balance. We can place our 
unknown mass into a system that oscillates (that is, to 
move back and forth from a central point) and measure 
the change in frequency of the oscillation. If accurately 
calibrated, this will give us the mass (rather than the 
weight). NASA has actually created instructions for how 
you can do this experiment at home or at school [4].

So now you should know the difference between 
mass and weight and that gravity varies depending on 
where you are. Thinking back to what you learnt about 
buoyancy in our previous article, can you now answer 
the question: would the Ever Given sit higher or lower 
in the water of the canal if it was nearer the south pole? 
Send your answers to aip_editor@aip.org.au; the first 
correct answers will win a (modest) prize.
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Hannah Edwards 
I am a veterinarian working in general mixed practice, 
which means that I provide routine care as well as 
complex medical and surgical diagnostics and treatments 
for domestic animals; not just for cats and dogs but 
anything from rats and lizards to alpaca and horses, as 
well as wildlife. 

It’s not just cuddling puppies and kittens! We provide 
expertise in a range of services for each patient, acting 
not only as the general practitioners (GPs) but also the 
dentists, dermatologists, anaesthetists, soft tissue an 
orthopaedic surgeons, radiologists and pathologists, to 
name just a few of the roles we fill.

On a daily basis I not only perform general health checks 
and vaccinations for people’s pets, but I also consult on 
issues relating to problems with pet health and behaviour. 

I may collect and analyse diagnostics such as blood 
tests and radiographs, provide medical treatments such 
as intravenous fluid therapy and complex medication 
regimes for simple to life-threatening diseases, and 
perform many kinds of surgery from a routine desexing, 
to stitching up wounds or emergency exploratory 
laparotomies. At the sadder end of the spectrum is 
euthanasia, where I am privileged to be part of a family’s 
goodbyes to their beloved pets.

I have also contributed to wildlife conservation through 
treatment of individual animals who are rehabilitated 
with wildlife carers before being released, and wildlife 
forensics by performing post-mortem examinations for 
authorities during their investigations of wildlife crime 
such as poisonings and shootings, as well as public health 
issues such as botulism.  

Another big part of my job is communicating with pet 
owners. It is an important part of the diagnostic and 
treatment processes. Educating them about and working 
with them as a team for their pets’ health and behaviour 
is imperative for animal welfare. 

#PhysicsGotMeHere
This column highlights people who have a qualification in physics but are in roles we might not 
traditionally associate with physicists. The information is drawn from the ‘Hidden Physicists’ section of 
the AIP e-bulletin.

Hannah Edwards BVSc (Hons I), BSc (Adv.) (Hons I, Physics), 
Veterinarian at Benetook Vet Clinic
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My career story so far:
My higher education started with physics rather than 
veterinary science. I had always wanted to be a vet, but I 
fell in love with physics in high school; so, when I didn’t 
get into vet school straight away, I chose to continue on 
with physics! In fact, I almost didn’t study vet science at 
all but was going to do a PhD in physics, modelling and 
developing technology for medical diagnostic imaging. 

When I completed my physics honours year (in which 
I studied detection of electromagnetic resonance using 
magnetic fields, again for the advancement of medical 
diagnostic imaging) I transferred to veterinary medicine. 
All the skills I learned through my undergraduate physics 
degree I was able to apply – from analytic thinking and 
problem solving, to scientific writing and the constantly 
dreaded group work.

To me, physics is the basis of understanding the world 
around me, even within veterinary medicine. When 
it came to learning about blood pressure and action 
potentials of nerves, intra- and intercellular fluid 
dynamics and cell signalling, optics of the eye and 
animal gaits and locomotion – physics was there. From 
understanding the basics of bone fracture repair and 
intrathoracic pressure changes due to wounds and how 
these impact breathing, to understanding diagnostic 
ultrasonography, radiography and electrocardiograms, 
to drug molecule actions in pharmacodynamics – 
physics was there!

I’ve studied and worked very hard to get where I am 
and be the vet I am today, but I think I am all the 
more equipped to be good at my job because of my 
undergraduate training in physics.

Errol Hunt 
Senior Communications Coordinator at ARC 
Centre of Excellence in Future Low-Energy 
Electronics Technologies (FLEET)
I share news about FLEET’s research with various 
external audiences, including the public, scientific and 
general media, industry, collaborators and schools. I 
also coordinate internal communications, which is a 
huge challenge for a geographically separated Centre of 
Excellence, and even more so in 2020!

My career story so far:
My school career advisor once told me, “You can’t be 
both a writer and a scientist, Errol. You have to choose 
one or the other.” #worstcareeradvice

I chose science, so after a year with NZ Electricity 
testing high-voltage equipment in the dank bowels of 
remote hydro-electric stations, I went to uni and studied 
physics, including a couple of stints with industry.

Post-uni, I had a lot of fun as a physicist in an industry 
research centre, modelling and measuring heat flow and 
magneto-hydrodynamics in aluminium reduction cells. 
I loved the problem-solving aspect – coming up with 
new ways to measure molten-metal velocities, magnetic 
fields or solid crust formations. This was all accomplished 
in relatively hostile conditions: perched over fuming 
1000ºC molten cryolite, in magnetic fields strong enough 
to occasionally trip you up by your steel-cap boots.

I abandoned science a while after that to join the travel 
publishing industry, including on-the-road guidebook 
research gigs in the Cook Islands and New Zealand, 
ghost-writing a book on the effects of climate change in 
Tuvalu, and being coordinating author on the company’s 
first multi-country guide to the South Pacific. 

Mostly, I commissioned work by other authors. These 
included some personal heroes, such as Booker prize 
winning novelist Keri Hulme, writing about the 
traditional Polynesian homeland of Hawaiki, historian 
James Belich on NZ history, and All Black Tana Umaga 
on Wellington cafes.

I was involved in a little media-engagement work for the 
company, mostly about Pacific Islands or NZ tourism, 
the highlight of which was swearing on national TV. 

I’d had to talk fast to persuade the company that my 
experience as a scientist was somehow useful in travel 
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writing, but the most transferrable skills from my 
previous job were actually project management, working 
in teams, commercials, and problem-solving.

Post travel-industry I decided to prove my old school 
careers advisor wrong and combine my two career streams 
of science and writing – thus, science-communications.

I discovered I got much more enjoyment from talking  
to other people about their science than I’d ever  
got from doing my own, and so a career in science-
comms was born.

Since then, I’ve talked to scientists about their work in 
space weather and climate extremes, immunology, coral 
reef health, coal dust, and black holes. I’ve learned how 
to run events (including some with the AIP), and written 
short articles on antibiotic resistance, solar panels, 
habitat restoration, and physics (lots about physics…). 

I regularly write up FLEET science for non-specialist 
audiences, and I’ve written a Year 12 textbook chapter 
on gravitation.

I’ve also helped develop and deliver a Year 10 unit on 
future computing, working with teachers and FLEET 
scientists to develop and guest-present the material. That 
was a fantastic experience.  

I’m looking for ways to do more of this, including in 
schools that don’t always get these opportunities. (Got 
ideas? Contact me!)

My latest passion is training scientists to do their own 
comms. Our Centre’s outreach projects have been 
really key in this. Explaining their science to schoolkids 
helps our members explain it to potential industry 
collaborators, or politicians, or funding partners. 

I’d also like to keep proving that bad careers advice 
wrong and persuade more people that it’s not necessary 
to choose between science and writing, or other artistic 
endeavours. 

I’m more passionate about awakening an appreciation 
of science in non-scientists than I am about persuading 
more kids to pursue a career in science. I think a science-
engaged public is better equipped to sift and debunk 
misinformation and is more likely to elect science-
engaged politicians.

Whāia te mātauranga hei oranga mō koutou. Study 
what you’re passionate about.

Errol Hunt demonstrating ‘Maunder and Hunt’s Very 
Fabulous Rainbow Position Locator’ (FLEET.org.au/
rainbow)

For all information about  
the Australian Institute of Physics, visit:  

www.aip.org.au
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BOOK REVIEW

Topology, A Categorical Approach 
by Tai-Danae Bradley, Tyler Bryson and John Terilla, Paperback ISBN 
9780262539357

Reviewed by Christina Pospisil pospisil.christina@gmx.de

In the book Topology, A Categorical Approach, topology 
is introduced in 7 chapters focusing on describing 
mathematical representation of space theory by starting 
with defining the characteristics of injective functions 
combined with other functions, and the characteristics 
of the disjoint union of sets regarding mathematical 
application with further sets. The book continues with 
examples of spaces and continuous functions, and begins 
defining topology with the subspace topology. Moreover, 
the quotient, product and coproduct topologies, with 
their universal properties, are defined. 

The second chapter is dedicated to the definition of 
connectedness and compactness. Important theorems 
include: the implication of connectedness from path 
connectedness, the characterization of a general space 
as the quotient of a Hausdorff space, the Bolzano-
Weierstrass Theorem about infinite sets in compact 

spaces, the Tychonoff Theorem I about the product of 
compact spaces, and the Heine-Borel Theorem about 
subsets of the n-dimensional space of real numbers. The 
Tube Lemma about open sets and particular products of 
open sets is also introduced in chapter 2 as fundamental 
basics for topology.

In the third chapter, one can find mathematical 
concepts about filters and limits of sequences. Filters 
on sets are defined through a collection, and cofinite 
subsets of a set are named Frechet filter. The Tychonoff 
Theorem II and its proof are one of the main sections 
of the chapter. Tychonoff’s Theorem II states that the 
compactedness of a product of compact spaces from a 
collection. Furthermore, the chapter presents the reader 
Zorn’s Lemma of the implication of the existence of 
a maximal element of a poset from a general chain in 
this poset, which cannot be empty to fulfill the lemma. 
From the Ultrafilter Lemma, one knows, that proper 
filters can be embedded in ultrafilters. A main result in 
this chapter is the equivalence of Tychonoff’s Theorem 
and the implication about non-emptiness of products of 
non-empty sets from a collection. The definition with 
examples of limits (from the category based definition) 
and colimits can be found in chapter 4, including 
the concepts of completeness and cocompleteness for 
categories. 

Adjunctions and compactifications are presented in 
chapter 5. Main terms and theorems to name are 
the Stone-Cech compactification, the One-Point 
Compactification, the Adjoint Functor theorem about 
the implication of the existence of left adjointness for 
a continuous functor, that fulfills the Solution Set 
Condition, the Compact-open topologies, Ascoli’s 
theorem about equicontinuity and compact closure, and 
Arzela’s Theorem about equicontinuity, boundedness 
and uniform convergence. 

Mixed topics about path adjunction, the fundamental 
theorem of algebra, groupoids, the fundamental group, 
the fundamental groupoid and further particular 
adjunctions like the Smash-Hom Adjunction are defined 
and presented in the sixth chapter. Results about spaces, 
continuous functions and the category of groupoids are 
summarized in the Seifert van Kampen Theorem. The 
textbook Topology, A Categorical Approach can be used 
for self-study and is published by the MIT Press.
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Physics around the 
world
Biological systems inspire new method for 
extracting lithium
A new way to extract lithium from contaminated water 
could make this technologically important metal much 
easier to produce. The technique, which involves passing 
aqueous brines through lithium-selective polymeric 
membranes, works in a way that mimics the potassium 
channels that regulate the balance of ions in biological 
systems.

Lithium has several applications in low-carbon energy 
and is widely employed in electrochemical technologies. 
Lithium-ion batteries, for example, dominate today’s 
market for rechargeable power storage thanks to the 
element’s low mass, large reduction potential and high 
energy density.

As electric vehicles become more popular, industrial 
demand for lithium is set to increase still further. This 
creates challenges, because although lithium is an earth-
abundant metal, extracting it from natural sources is not 
easy. Currently, it is sourced from deposits of a mineral 
called pegmatite and salt brines via solar evaporation – a 
costly and inefficient process that can take over a year.

Crown ethers
Researchers have previously explored ways of using 
polymer membranes to extract lithium from aqueous 
solutions. Conventional polymer membranes typically 
separate solutes based on differences in either the size or 
the charge of ions, but this is not specific enough to target 
lithium alone. Most such membranes allow sodium ions 
to permeate at a greater rate than lithium ones.

A team led by Benny Freeman of the University of Texas 
at Austin has now succeeded in reversing this behaviour 
by developing a novel polymer membrane containing 
crown ethers – chemically functionalized ligands that can 
bind certain ions. These ligands hinder the permeation of 
sodium but “ignore” lithium, meaning it passes through 
the membrane at a greater rate than sodium. Indeed, the 
team’s lithium transport measurements revealed that the 
material boasts an unprecedented reverse permeability 
selectivity, preferring lithium over sodium by a factor of 
roughly 2.3 – the highest selectivity ever documented 
for a dense, water-swollen polymer.

“Lithium is currently extracted from brines through the 
use of evaporation ponds, which is a slow and laborious 
process,” explains Freeman. “Using membranes such as 
ours that can extract lithium is advantageous because 
they are energy efficient, scalable and can have a much 
higher throughput than evaporation ponds.”

(extracted with permission from an item by Isabelle Dumé 
at physicsworld.com)

Could the future of vaccines be syringe-free?
In the global fight against COVID-19, around 6.8 
billion vaccine doses have been administered across the 
world, a figure that is likely to rise as more doses become 
available and with many countries now recommending 
booster jabs. As often in times of health crises, new 
medical technologies have emerged, driven by the sense 
of urgency and extra funding, that address difficulties 
of existing methods and could change healthcare 
paradigms for years to come.

During the COVID-19 crisis, we have witnessed the 
rise to prominence of messenger-RNA vaccines, which 
trigger immune reaction by directly teaching cells to 
produce subunit antigens, rather than by introducing 
weakened forms of the virus. This design makes them 
easier to design and manufacture than traditional 
vaccines.

Lithium extraction. (Courtesy: The University of Texas at 
Austin)
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But the pandemic also highlighted logistic and delivery 
hurdles. Indeed, many supply chain and delivery 
challenges have hindered mass vaccination against 
COVID-19, particularly in resource-limited countries: 
vaccines need to be stored in freezers, both during 
shipping and at delivery sites, and injected by trained 
healthcare professionals. This usually requires a visit to a 
clinic or a hospital, while those who fear needles may be 
offput by the traditional syringe-based vaccine delivery.

To address these challenges, two independent teams 
from the US and China set out to create patches 
composed of multiple microneedles, each smaller than a 
millimetre high, that can deliver vaccines into the skin. 
This technique can result in more antigen-presenting 
cells (the vaccine’s targets) than achieved via muscular 
injection. The teams report their findings in two separate 
articles, where they also highlight the technology’s 
potential for boosting immunity while reducing the 
volume of compound administered.

Customizing patches
In a study described in PNAS, researchers from the 
University of North Carolina and Stanford University 
in the US, led by Shaomin Tian and Joseph DeSimone, 
took advantage of continuous liquid interface 
production (CLIP) 3D printing to create vaccine 
patches with microneedles of different sizes and shapes. 
CLIP functions by triggering a photochemical reaction 
at the interface of a liquid resin, curing the resin into 
a solid state. It relies on a tuneable light sequence that 
meticulously manages the light–resin interaction.

Until now, 3D-printed patches could not offer a high level 
of customization, resulting in bed-of-nails-like patches 
created through moulds. Repeated use of the moulds 
over time decreased the sharpness of the microneedles 
created, which eventually limited the vaccine efficiency.

“Our approach allows us to directly 3D print the 
microneedles, which gives us lots of design latitude for 
making the best microneedles from a performance and 
cost point-of-view,” Tian says.

The needle design chosen by the team is shaped like 
a fir tree, which increases its surface area and cargo 
loading (36% greater loading than a conventional 
pyramidal design). When compared with traditional 
subcutaneous injection, patches containing a common 
model antigen (ovalbumin) and the immunostimulator 
CpG induced an immune response 20 times higher after 
prime immunization, and 50 times higher after booster 
injection in mice.

The studies also highlighted the potential dose sparing 
ability of the patch, as the immune response elicited was 
the same with 10 times less ovalbumin (but the same 
level of CpG), or with five times less CpG (but the same 
level of ovalbumin).

(extracted with permission from an item by Samuel Vennin 
at physicsworld.com)

Physicists get under the skin of apple 
growth
Researchers in the US have used the physics of singularities 
to study the recess, or cusp, that forms around the stalk 
of an apple. Based on field and laboratory experiments 
as well as simulations, they determined that the cusp is 
self-similar, meaning that it looks the same at different 
stages of the apple’s growth. They also investigated the 
emergence of multiple cusps, as are sometimes seen in 
real fruit.

Singularities are points at which a certain quantity 
becomes infinite or ill-defined. The infinite space-time 
curvature thought to exist at the centre of black holes 
is one well-known example, but singularities also crop 
up in other areas of physics. In biology, meanwhile, 
examples include the sharp folds on the surface of 
the brain and the way bacteria clump together in the 
presence of certain chemicals.

Move over, Newton
The latest research sees Lakshminarayanan Mahadevan 
and colleagues at Harvard University explore the 
singularity created by the abrupt change in the 
orientation of the apple’s surface at the base of its stalk. In 
a paper published in Nature Physics, they describe how 
this singularity develops as the apple grows from a slight 

Vaccine delivery: The 3D-printed patch designed by 
researchers in the US contains 100 microneedles. (Courtesy: 
Shaomin Tian)
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bulge in the stem of a blossom into a fully-formed fruit 
with a seed-containing core, a fleshy cortex surrounding 
it and a tough outer skin.

To make their observations, Mahadevan and colleagues 
began by studying the shapes of 100 apples picked at 
different stages of their growth from the orchard of a 
college, Peterhouse, at Cambridge University, UK. By 
slicing each apple in half, they created a series of cross-
sections, then arranged them in order as if they were 
stills from a film depicting the changing shape of a 
single apple.

The team found that apples measuring less than about 
1.5 cm across displayed no discernible cusp, while those 
with a diameter of more than 3 cm had a distinctive dip 
at the base of the stalk. This is because in the early stages 
of the apple’s growth, the contour of the peel varies 
smoothly. As the cortex starts to expand more quickly 
than the core, however, a bulge forms away from the 
core and a discontinuity appears in the apple’s perimeter.

Harvesting data
Next, the researchers analysed the apple’s shape by 
defining its cross-sectional profile as a one-dimensional 
curve with a height that depends on both the distance 
from the stalk and the size of the apple. After generating 
Taylor expansions of the height and distance variables 
in terms of the size, they succeeded in expressing the 
apple’s profile in a self-similar way.

To establish whether real apples also display this self-
similarity while approaching a cusp-like singularity, 
Mahadevan and co-workers rescaled the height and 

stalk-distance axes using appropriate coefficients 
and then plotted each apple’s profile. They found, as 
expected, that the measured profiles all overlapped 
with one another near the cusp – tracing out what they 
describe as a “universal curve”.

(extracted with permission from an item by Edwin 
Cartlidge at theconversation.com)

Ethical hacking group worms its way into 
Fermilab
A group of “ethical hackers” has obtained access to 
sensitive systems and proprietary online data hosted 
by the  Fermi National Accelerator Laboratory  in the 
US after accessing multiple unsecured entry points 
in late April and early May. The group –  Sakura 
Samurai  –  discovered  configuration data for the 
lab’s NoVa experiment and more than 4500 “tickets” for 
tracking internal projects.

The Sakura Samurai team has previous experience 
probing the vulnerabilities of scientific and educational 
organizations, which hold critical information that if 
leaked could put those institutions at risk. “Fermilab 
was no different,” Sakura Samurai member Robert 
Willis told  Physics World. “Oversharing can be very 
dangerous, especially when it’s sharing credentials that 
could enable a malicious actor to take over a server with 
the potential to move across their network to access 
items that the organization wouldn’t even think of being 
vulnerable.”

(extracted with permission from an item by Peter Gwynne 
at physicsworld.com)

Figure depicting the cross-section of apples at different 
stages of growthFruity physics Top: A Gala apple with a 
cusp where the fruit meets the stalk. Bottom: Apple cross-
sections at different stages of the fruit's growth. (Courtesy: 
Modified from Fig. 1 of A Chakrabarti et al., Nature Physics 
17 1125. Reused with permission.)

Access all areas: The Sakura Samurai group of ethical hackers 
infiltrated Fermilab’s data systems with the knowledge of 
the lab’s managers. (Courtesy: Fermilab/Reidar Hahn))
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Coherent Scientific
ContourX Family of Optical Profilometers 
The ContourX family of optical profilometers 
uses numerous advances in Bruker’s white light 
interferometry technology to deliver the industry’s 
most capable benchtop metrology system with easy to 
use surface measurement software. Available in three 
models, the ContourX profilers feature new, robust 
design and provide a range of capabilities and price 
points optimised to match individual metrology and 
budget requirements.

New hardware features include an innovative stage 
design for larger stitching capabilities and a 5MP 
camera with a 1200x1000 measurement array for 
lower noise, larger field-of-view, and higher lateral 
resolution. In addition to the new USI and Advanced 
PSI modes, software enhancements include Bruker’s 
new VisionXpress interface, which provides simple and 
intuitive access to the full power of the award-winning 
Vision64® analytical software suite and makes these 
profilers ideal for multi-user environments. The latest 
version of VisionMAP software further complements 
those features with customised reporting and advanced 
analysis capabilities.

Offering faster data collection and improved ease-of-
use the ContourX systems offer previously unattainable 
measurement capabilities in a benchtop form.

New Excimer Laser, 248nm, 1.2J
LEAP Excimer Lasers from Coherent deliver a unique 
combination of high duty-cycle output, outstanding 
reliability, and low cost-of-ownership. This makes 
them an ideal source for a diverse range of demanding, 
high throughput, high precision microprocessing 
tasks ranging from display fabrication to reel-to-reel 
manufacturing of superconductive tape.

The new LEAP K 1.25J has been designed to extend 
the available pulse energy range of the LEAP family, 
enabling superior field size at the 248nm wavelength.

LEAP lasers are available at wavelengths 193nm, 248nm 
or 308nm with output powers of up to 300W (and pulse 
energies of up to 1.25J).

Andor Continuous Flow Helium Cryostat
The OptistatCF-V sample-in-vacuum cryostat from 
Andor is well suited for experiments requiring a large 
sample space and minimum number of windows in the 
optical beam path (reducing reflective losses).

• Lowest helium consumption on the market

• Wide temperature range 2.3K to 500K

• Large sample space enabling studies of sample with 
a wide range of size and geometry

• Superb optical access (f/0.9) for measurements 
requiring light collection

Product News
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For further information please contact; 
Coherent Scientific Pty Ltd 
sales@coherent.com.au 
www.coherent.com.au

Lastek Scientific
The digital Kestrel EMCCD camera from 
Raptor Photonics
Raptor Photonics has launched a new EMCCD 
camera, the Kestrel 1000, offering ultra-low readout 
noise while running at 1,000 frames per second 
(fps) in full frame and up to 1,800 fps with ROI.  

Key features:

• Up to 1,800 frame per second with ROI – The fastest 
EMCCD on the market

• 128 x 128 Back-thinned EMCCD sensor – Enables 
optimum image resolution in low light imaging 
applications

• 16 bit Camera Link output – Realtime imaging for 
low latency photon to digital image

• Up to 95% QE from back-illuminated sensor – 
Optimum Photon collection

• Strong VIS and NIR response and ultrawide 
bandwidth – From 350nm through to 1100nm

New Scale Technologies: What’s inside an M3 
smart module?
Smart modules and microstages built on the New 
Scale Technologies M3 (micro-mechatronics) platform 
incorporate:

• A SQUIGGLE or UTAF piezoelectric micro motor

• A motor driver ASIC

• A position sensor (encoder)

• An on-board microprocessor for PID control

• A customized motion guide assembly and housing to 
suit your OEM application

You provide simple motion commands over a standard 
serial interface. It’s all inside!

High Finesse Linewidth Analyzer 
The HighFinesse Linewidth Analyzers are high-end 
optical instruments for measuring, analyzing and 
controlling frequency and intensity noise of laser light 
sources. By combining an interferometric working 
principle with ultra-low noise electronics, a superb 
sensitivity is achieved. The real-time signal output offers 
the option for a fast feedback loop that can be used to 
actively reduce the frequency noise of the laser. 
 

HighFinesse LWA-1k series. The 1k models are 
ultimate high-end optical instruments engineered to 
analyze and control the frequency noise and lineshape 
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of ultra-narrow lasers. Additionally these instruments 
offer the option to investigate the relative intensity 
noise of the laser light source with very high resolution 
and sensitivity. 
 
Analyzing Options
• Frequency deviation time trace and histogram
• Frequency noise density spectrum
• Intensity noise spectrum
• Laser lineshape spectrum

Effective linewidth:

• Noise at all measured frequencies contributing to 
the linewidth

• Lorentzian, Gaussian and Voigt fits for lineshape 
spectra

Intrinsic linewidth:
• Level of noise floor at higher frequencies

For further information, please contact  
Lastek Pty Ltd (+61) 08 8443 8668 
sales@lastek.com.au   
www.lastek.com.au

IOP Publishing

IOP ebooks’ Milestone 
IOP Publishing’s ebook collections offer high-quality 
research across the physical sciences. They have been 
created to meet the needs of students, early-career 
researchers and established leaders in the respective fields. 

This July we’ve published our 600th book Quantum 
Entanglement Engineering and Applications, covering one 
of the most mysterious and yet most promising subjects 
of current physics.

The Environmental Research Series
IOP Publishing’s expanding Environmental Research 
series offers an evolving suite of fully open access 
titles covering the most critical areas of environmental 
science and sustainability. It now comprises of six 
titles that collectively address all major areas of 
environmental science, including three ones launched 
this Oct: Environmental Research: Health (ERH), 
Environmenta l Research: Climate (ERCL) and 
Environmental Research: Ecology (ERE).

The series is aligned with the major international virtual 
conference, Environmental Research 2021, taking place 
from 15 to 19 November 2021.

Great reasons to create a My IOPscience 
account
IOPscience, the home of scientific content 
from IOP Publishing and our partners, 
has been designed to make it easy for researchers 
to access scientific, technical and medical content.

Creating a My IOPscience account provides users with 
a place to manage their communication and content 
preferences. By providing just a few details users can make 
the most of a range of personalised benefits and ensure 
that they never miss out on relevant, interesting research.

The account benefits range from tagging articles, saving 
searches and setting up email alerts for new content and 
citations, to viewing the downloads, articles listed as 
corresponding authors at a glance.
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Surface & Dimensional Analysis

Nanoscale IR Characterisation
Sub-10nm IR chemical 
imaging resolution

Single monolayer 
IR spectroscopy sensitivity

Correlated nanoscale 
property mapping

Matches industrial FTIR databases

Best performance IR spectroscopy 
and sSNOM in one instrument

N
EW

High-resolution
AFM Microscopes

Large sample and 
small sample atomic 

force microscopes

Tribology
Comprehensive materials
tester for mechanical and

tribological properties

Optical Profiling
High-resolution, 
non-contact 3D profiling, 
and fully integrated 
automated metrology

Nanoindentation
Highest sensitivity nanoscale 
to microscale mechanical 
property measurement and 
high speed property mapping 
across the widest range of 
sample environments

(08) 8150 5200
sales@coherent.com.au
www.coherent.com.au


